top of page

Our lab research focuses on investigating the structure and function of bacteria in the phytobiome and their impact on plant health. We are particularly interested in understanding the mechanisms underlying the microbe-microbe and host-microbe interactions leading to increased resilience plants against biotic and abiotic stresses.

Profiling of marker genes and high throughput metagenome sequencing have improved our understanding of the composition of microbial communities in the rhizosphere and plant environment. As a result, small consortia of microbes known as synthetic microbial communities (SynComs) can be engineered to mimic the observed structure and function of natural conditions. Recently, we showed that engineering SynComs should take into consideration multiple attributes, including desirable plant phenotypes and microbial traits (Martins et al. 2023) (Fig. 1).

Figure 1. Roadmap to engineering a successful synthetic microbial community (SynCom).

Martins SJ et al. Phytopathology, 2023. 

doi:10.1094/PHYTO-01-23-0016-IA

PP_MicrobiomeIllustration.jpg
PHONA FINAL.png

Phenotype-OTU Network Analysis (PhONA)

Figure 2Using the R package “igraph”, the adjacency matrix was transformed into a network, with nodes representing OTUs and edges indicating significant correlations.

Using the plant phenotype (Eg. disease resistance)-operational taxonomic unit (OTU) network analysis, it is possible to increase the change to obtain successful SynCom members.

 

In the figure on the side we showed that 36 significant (P<0.05) OTU’s correlate to either higher or lower disease severity (positive and negative associations). Significance is highest with Nordella (P<0.05) and incrementally decreases in a counterclockwise pattern around the circular network. Organisms such as BauldiaRoseiflexaceae, and Hirschia correlate with healthier plants (less disease severity), while Nordella, Devosiaceae, and Pedomicrobium correlate with disease progress (more disease severity) (Ketehouli et al. 2024) (Fig 2).

Our lab is also interested in investigating anthropogenic changes in the environment that interfere with plant-microbe interactions. In this study conducted by Pasche et al. (2023) we demonstrated that by planting Paspalum notatum to cover the soil between tomato cultivations in Years 1 and 2, a shift in the soil microbial structure was observed along with changes in the soil physical-chemical proprieties, ultimately leading to healthier plants (reduction of infections of plant-parasitic nematode Meloidogyne enterolobii) (Fig. 3).

Graphical Abstract copy.png

Figure 3. Soil microbiome and physical-chemical proprieties changes between years 1 and 2 led to a reduction of infection by the plant-parasitic nematode. 

Pasche et al. Plant Pathology, 2023. doi:10.1111/ppa.13742

Fig_7B_vertical.png

Research and Education Integration

The education component of my program has been integrated with my research through outreach activities as part of the following grants: 

  • USDA-NIFA (award n°: 2022-68015-36721)

  • USDA-OREI (award n°: 2022-51300-37888)

  • USDA-NIFA (award n°: 2021-68013-33758)

Top right: “Plants get sick too!” workshop for teachers from underrepresented groups in Florida. More than 65% of the teachers work in Title I schools, where most of the students are eligible for the federal free and reduced-price meal program.

Bottom right: Gained knowledge assessed through self-assessment in pre- and post-surveys (y-axis). The x-axis shows questions asked in the surveys (e.g.: Teachers were asked before and after the workshop to rate their confidence on a scale of 1 to 10 in teaching the topics of plant pathology: bacteriology, nematology, mycology, etc.). All activities conducted in this research were approved by the Institutional Review Board (service survey number: IRB202300828).

(Photo used by teachers’ permission).

Peer-Reviewed Publications

(*Correspondent author; Self & Members of Martins Lab = bold; Senior/principal author(s) = Underline; Fellow = f; Graduate Student = g; Other = &; Post-Doctoral Associate/Fellow = p; Resident = r; Undergraduate = u)

2023

 

28. Coquerel MG, Wegerif J, McAuley A, Read QD, Chowdhury N, Jeong KC, Morris JG, Martins SJ, Goss EM, Ascunce MS. Preliminary assessment of bacterial antibiotic resistant and Candidatus Liberibacter asiaticus titer in three Florida commercial citrus groves. Crop Protection, 2023doi:10.1016/j.cropro.2023.106350

27Martins SJ, Pasche J (g), HAO Silva (g), Selten G, Savastano N, Abreu LM, Bais H, Garrett K, Kraisitudomsook N, CMJ Pieterse, Cernava T. The Use of Synthetic Microbial Communities (SynComs) to Improve Plant Health. Phytopathology, 2023, doi.org/10.1094/PHYTO-01-23-0016-IA [link]

26. Martins SJ & Goss E. Assessment of Students’ Perception of Research in an Honors Thesis Preparation Course. Research, Society and Development, v.12(1), e23112139445, 2023. doi:10.33448/rsd-v12i1.39445 [open access link]

25. Pasche J (g), Brito JA, Vallad GE, Brawner JT, Snyder SL (u), Fleming EA (u), Yang J (g), Terra WC, Martins SJ. Assessing the impact of successive soil cultivation on Meloidogyne enterolobii infection and on soil bacterial assemblages. Plant Pathology, 2023. doi:10.1111/ppa.13742

24. Garcia FHS, Domingues-Júnior AP, Nogueira ML, de Paula S, Ferreira J, Lavres J, Martins SJ, Fernie AR, Kluge RA. Sulfur metabolism in sugarcane is affected by high titers of Leifsonia xyli subsp. xyli. Plant and Soil, 2023, doi:10.1111/ppa.13742

2022

 

23. Martins SJ, Taerum SJ, Triplett L, Emerson JB, Zasada I, de Toledo BF, Kovac J, Martin K, Bull CT. Soil bacterivores and other bacterial predators for plant and human health. Phytobiomes Journal, v. 6, p. 184-200, 2022. doi:10.1094/PBIOMES-11-21-0073-RVW [open access link]

22. Hamidizade M, Taghavi SM, Herschlag RA, Martins SJ, Hockett KL, Bull CT, Osdaghi E. Occurrence of Brown Spot on White Button Mushroom (Agaricus bisporus) caused by Cedecea neteri in Iran. Plant Disease, 2022. doi:10.1094/PDIS-06-21-1305-PDN [open access link]

2021

 

21. Martins SJ, Barber NL (g), Bitton-Bailey A, Byron MA, Lyons NL, Roberts TG. Employing Collaborative Assessments in an In-Person Undergraduate Class. NACTA Journal, v. 65, p. 478-486, 2021 [open access link

 

20. Poudel M, Mendes R, Soares LA, Bueno CG, Meng Y, Folimonova SY, Garrett KA, Martins SJ. The role of plant-associated bacteria, fungi and viruses in drought stress mitigation. Frontiers in Microbiology, v.12, 2021 doi:10.3389/fmicb.2021.743512 [open access link]

 

19. Garcia FHS, Daneluzzi GS, Mazzafera P, Almeida M, Nyheim ØS, Azevedo RA, Kirch JL, Martins SJ, Kluge RA. Ratoon Stunting Disease (Leifsonia xyli subsp. xyli) affects source-sink relationship in sugarcane by decreasing sugar partitioning to tillers. Physiological and Molecular Plant Pathology, v.116. p.1-11, 2021 doi:10.1016/j.pmpp.2021.101723 [link]

2020

18. Fráguas RM, Costa VA, Terra WC, Aguiar AP, Martins SJ, Campos VP, Oliveira DF. Toxicities of 4,5-Dihydroisoxazoles against the Root-Knot Nematodes and in Silico Studies of their Mode of Actions. Journal of Agricultural and Food Chemistry, v.68, p.523–529, 2020 doi:10.1021/acs.jafc.9b07839 [link]

 

17. Hamidizade M, Taghavi MS, Martins SJ, Herschlag RA, Hockett KL, Bull CT, Osdaghi E. Bacterial brown pit, a new disease of edible mushrooms caused by Mycetocola sp. Plant Disease, v.104, p.1445-1454, 2020 doi:10.1094/PDIS-10-19-2176-RE [link]

 

16. Martins SJ, Trexler RV, Vieira FR, Pecchia J, Kandel P, Hockett K, Bell TH, Bull CT. Comparing approaches for capturing bacterial assemblages associated with symptomatic (bacterial blotch) and asymptomatic mushroom (Agaricus bisporus) caps. Phytobiomes Journal, v.4, p.90-99, 2020. doi:10.1094/PBIOMES-08-19-0044-R [open access link]

2019

 

15. Osdaghi E, Martins SJ, Ramos-Sepulveda L, Vieira FR, Pecchia JA, Beyer DM, Bell TH, Yang Y, Hockett KL, Bull CT. 100 Years since Tolaas: Bacterial Blotch of Mushrooms in the 21st Century. Plant Disease, 2019. doi:10.1094/PDIS-03-19-0589-FE [open access link]

 

14. Martins SJ, Faria AF, Medeiros FHV, Pedroso MP, Cunha MG, Rocha MR. Rhizobacterial volatiles in the control of anthracnose in common bean. Biological Control, v.131, p.36-42, 2019. doi:10.1016/j.biocontrol.2019.01.003 [link]

 

13. Oliveira DF, Costa VA, Terra WC, Campos VP, Paula PM, Martins SJ. Impact of phenolic compounds on Meloidogyne incognita in vitro and in tomato plants. Experimental Parasitology, v.199, p.17-23, 2019. doi:10.1016/j.exppara.2019.02.009 [link]

 

12. Laborde MCF, Botelho D, Rodríguez G, Resende MLV, Queiroz M, Batista A, Cardoso P, Pascholati S, Gusmão L, Martins SJ, Medeiros FHV. Phialomyces macrosporus reduces Cercospora coffeicola survival on symptomatic coffee leaves. Coffee Science, v.14, p.1-11, 2019. doi:10.25186/cs.v14i1.1448 [link]

2018

 

11. Martins SJ, Rocha GA (g), Georg RC, Ulhôa CJ, Cunha MG, Rocha MR, Araújo LG, Vaz KS (u), Dianese EC, Oshiquiri LH, Dunlap CA. Plant-associated bacteria mitigate drought stress in soybean. Environmental Science and Pollution Research, v.25, p.1-11 2018. doi:10.1007/s11356-018-1610-5 [link]

 

10. Martins SA, Schurt, DA, Seabra SS, Martins SJ, Ramalho MAP, Moreira FMS, da Silva JCP. da Silva JAG, Medeiros FHV. Common bean (Phaseolus vulgaris L.) growth promotion and biocontrol by rhizobacteria under Rhizoctonia solani suppressive and conducive soils. Applied Soil Ecology, v.127, p.129-135, 2018. doi:10.1016/j. apsoil.2018.03.007 [link]

 

9. Martins SJ, Medeiros FHV, Lakshmanan V, Bais HP. Impact of seed exudates on growth and biofilm formation of Bacillus amyloliquefaciens ALB629 in common bean. Frontiers in Mic­­­robiology, v.8, p.1-9, 2018. doi:10.3389/fmicb.2017.02631 [open access link]

 

8. Terra WC, Campos VP, Martins SJ, Costa LSAS, da Silva JCP, Barros AF, Lopez LE, Santos TCN, Smant G. Volatile organic molecules from Fusarium oxysporum 21 with nematicidal activity against Meloidogyne incognita. Crop Protection, v.106, p.125-131, 2018. doi:10.1016/j.cropro.2017.12.022 [link]

 

2016

7. Martins SJ, Medeiros FHV, Andrade RC, Nunez AMP, Souza B, Moino Junior A, Filgueiras CC. Dual role of milk on aphid and powdery mildew control in kale. Scientia Horticulturae, v.203, p.126-130, 2016. doi:10.1016/j.scienta.2016.03.023 [link]

2015

 

6. Martins SJ, Medeiros FHV, Souza RM, Faria AF, Cancellier EL, Silveira HRO, Rezende MLV, Guilherme LRG. Common bean growth and health promoted by rhizobacteria and the contribution of magnesium to the observed responses. Applied Soil Ecology, v.87, p.49-55, 2015. doi:10.1016/j.apsoil.2014.11.005 [link]

 

5. Martins SJ, Soares AC, Medeiros FHV, Santos DBC, Pozza EA. Contribution of host and environmental factors to the hyperparasitism of coffee rust under field conditions. Australasian Plant Pathology, v.44, p.605-610, 2015. doi:10.1007/s13313-015-0375-2 [link]

2014

4. Martins SJ, Medeiros FHV, Souza RM, Vilela LAF. Is curtobacterium wilt biocontrol temperature dependent? Acta Scientiarum. Agronomy, v.36, p­­­­.409, 2014. doi:10.4025/actasciagron.v36i4.18018 [link]

3. Silva EO (g), Martins SJ, Alves E. Essential oils for the control of bacterial speck in tomato crop. African Journal of Agricultural Research, v.9, p.2624-2629, 2014. doi:10.5897/ajar2014.8918 [link]

2013

2. Martins SJ, Medeiros FHV, Souza RM, Rezende MLV, Ribeiro Junior PM. Biological control of bacterial wilt of common bean by plant growth-promoting rhizobacteria. Biological Control, v.66, p.65-71, 2013. doi:10.1016/j.biocontrol.2013.03.009 [link]

2012

 

1. Medeiros FHV, Martins SJ, Zucchi TD, Melo IS, Batista LR, Machado JC. Biological control of mycotoxins-producing molds. Ciência & Agrotecnologia, v.36, p.483-497, 2012. doi:10.1590/S1413-70542012000500001 [link

bottom of page